312 research outputs found

    Exemplar Dynamics Models of the Stability of Phonological Categories

    Full text link
    We develop a model for the stability and maintenance of phonological categories. Examples of phonological categories are vowel sounds such as "i" and "e". We model such categories as consisting of collections of labeled exemplars that language users store in their memory. Each exemplar is a detailed memory of an instance of the linguistic entity in question. Starting from an exemplar-level model we derive integro-differential equations for the long-term evolution of the density of exemplars in different portions of phonetic space. Using these latter equations we investigate under what conditions two phonological categories merge or not. Our main conclusion is that for the preservation of distinct phonological categories, it is necessary that anomalous speech tokens of a given category are discarded, and not merely stored in memory as an exemplar of another category.Comment: 6 pages, COGS201

    Phase Field Crystals as a Coarse-Graining in Time of Molecular Dynamics

    Full text link
    Phase field crystals (PFC) are a tool for simulating materials at the atomic level. They combine the small length-scale resolution of molecular dynamics (MD) with the ability to simulate dynamics on mesoscopic time scales. We show how PFC can be interpreted as the result of applying coarse-graining in time to the microscopic density field of molecular dynamics simulations. We take the form of the free energy for the phase field from the classical density functional theory of inhomogeneous liquids and then choose coefficients to match the structure factor of the time coarse-grained microscopic density field. As an example, we show how to construct a PFC free energy for Weber and Stillinger's two-dimensional square crystal potential which models a system of proteins suspended in a membrane.Comment: 5 pages, 4 figures, typos corrected, more explanation in parts, equilib vs non-equilib clarifie

    Weak Convergence in the Prokhorov Metric of Methods for Stochastic Differential Equations

    Full text link
    We consider the weak convergence of numerical methods for stochastic differential equations (SDEs). Weak convergence is usually expressed in terms of the convergence of expected values of test functions of the trajectories. Here we present an alternative formulation of weak convergence in terms of the well-known Prokhorov metric on spaces of random variables. For a general class of methods, we establish bounds on the rates of convergence in terms of the Prokhorov metric. In doing so, we revisit the original proofs of weak convergence and show explicitly how the bounds on the error depend on the smoothness of the test functions. As an application of our result, we use the Strassen - Dudley theorem to show that the numerical approximation and the true solution to the system of SDEs can be re-embedded in a probability space in such a way that the method converges there in a strong sense. One corollary of this last result is that the method converges in the Wasserstein distance, another metric on spaces of random variables. Another corollary establishes rates of convergence for expected values of test functions assuming only local Lipschitz continuity. We conclude with a review of the existing results for pathwise convergence of weakly converging methods and the corresponding strong results available under re-embedding.Comment: 12 pages, 2nd revision for IMA J Numerical Analysis. Further minor errors correcte

    Complexity reduction of astrochemical networks

    Full text link
    We present a new computational scheme aimed at reducing the complexity of the chemical networks in astrophysical models, one which is shown to markedly improve their computational efficiency. It contains a flux-reduction scheme that permits to deal with both large and small systems. This procedure is shown to yield a large speed-up of the corresponding numerical codes and provides good accord with the full network results. We analyse and discuss two examples involving chemistry networks of the interstellar medium and show that the results from the present reduction technique reproduce very well the results from fuller calculations.Comment: 9 pages, 7 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    DDFT calibration and investigation of an anisotropic phase-field crystal model

    Full text link
    The anisotropic phase-field crystal model recently proposed and used by Prieler et al. [J. Phys.: Condens. Matter 21, 464110 (2009)] is derived from microscopic density functional theory for anisotropic particles with fixed orientation. Further its morphology diagram is explored. In particular we investigated the influence of anisotropy and undercooling on the process of nucleation and microstructure formation from atomic to the microscale. To that end numerical simulations were performed varying those dimensionless parameters which represent anisotropy and undercooling in our anisotropic phase-field crystal (APFC) model. The results from these numerical simulations are summarized in terms of a morphology diagram of the stable state phase. These stable phases are also investigated with respect to their kinetics and characteristic morphological features.Comment: It contain 13 pages and total of 7 figure

    Conservation laws for vacuum tetrad gravity

    Full text link
    Ten conservation laws in useful polynomial form are derived from a Cartan form and Exterior Differential System (EDS) for the tetrad equations of vacuum relativity. The Noether construction of conservation laws for well posed EDS is introduced first, and an illustration given, deriving 15 conservation laws of the free field Maxwell Equations from symmetries of its EDS. The Maxwell EDS and tetrad gravity EDS have parallel structures, with their numbers of dependent variables, numbers of generating 2-forms and generating 3-forms, and Cartan character tables all in the ratio of 1 to 4. They have 10 corresponding symmetries with the same Lorentz algebra, and 10 corresponding conservation laws.Comment: Final version with additional reference
    • …
    corecore